Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Front Pediatr ; 12: 1385970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646510

RESUMO

Inborn errors of bile acid metabolism (IEBAM) cause cholestasis during the neonatal period, and 8 types of IEBAM have been reported to date. IEBAM accounts for approximately 2% of cases of cholestasis of unknown cause. As only 10 patients have been identified in Japan, IEBAM presents diagnostic challenges due to the similarity of clinical symptoms with biliary atresia, thus necessitating precise differentiation to avoid unnecessary invasive procedures. Laboratory tests in IEBAM are characterized by normal γ-glutamyltransferase (GGT) and serum total bile acid (STBA) levels despite the presence of cholestasis; therefore, measuring STBA and GGT is essential to distinguishing biliary atresia from IEBAM. With suspected IEBAM, liquid chromatography-mass spectrometry (LC/MS) analysis of urinary bile acids is needed to optimize diagnostic and therapeutic efficacy and avoid open cholangiography and initiate treatment for primary bile acids such as cholic acid or chenodeoxycholic acid. This prospective report aims to increase awareness of IEBAM by highlighting the characteristics of general blood test and bile acid profiles from LC/MS analyses of blood, urine, and stool samples.

2.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517206

RESUMO

BACKGROUND: Pediatric cholestatic liver diseases (Ped-CLD) comprise many ultrarare disorders with a genetic basis. Pharmacologic therapy for severe cases of Ped-CLD has not been established. Species differences in bile acid (BA) metabolism between humans and rodents contribute to the lack of phenocopy of patients with Ped-CLD in rodents and hinder the development of therapeutic strategies. We aimed to establish an efficient in vivo system to understand BA-related pathogenesis, such as Ped-CLD. METHODS: We generated mice that express spCas9 specifically in the liver (L-Cas9Tg/Tg [liver-specific Cas9Tg/Tg] mice) and designed recombinant adeno-associated virus serotype 8 encoding small-guide RNA (AAV8 sgRNA) targeting Abcc2, Abcb11, and Cyp2c70. In humans, ABCC2 and ABCB11 deficiencies cause constitutional hyperbilirubinemia and most severe Ped-CLD, respectively. Cyp2c70 encodes an enzyme responsible for the rodent-specific BA profile. Six-week-old L-Cas9Tg/Tg mice were injected with this AAV8 sgRNA and subjected to biochemical and histological analysis. RESULTS: Fourteen days after the injection with AAV8 sgRNA targeting Abcc2, L-Cas9Tg/Tg mice exhibited jaundice and phenocopied patients with ABCC2 deficiency. L-Cas9Tg/Tg mice injected with AAV8 sgRNA targeting Abcb11 showed hepatomegaly and cholestasis without histological evidence of liver injury. Compared to Abcb11 alone, simultaneous injection of AAV8 sgRNA for Abcb11 and Cyp2c70 humanized the BA profile and caused higher transaminase levels and parenchymal necrosis, resembling phenotypes with ABCB11 deficiency. CONCLUSIONS: This study provides proof of concept for efficient in vivo assessment of cholestasis-related genes in humanized bile acid profiles. Our platform offers a more time- and cost-effective alternative to conventional genetically engineered mice, increasing our understanding of BA-related pathogenesis such as Ped-CLD and expanding the potential for translational research.


Assuntos
Ácidos e Sais Biliares , Colestase , Humanos , Camundongos , Criança , Animais , Ácidos e Sais Biliares/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Colestase/metabolismo , Fígado/metabolismo , Fenótipo
3.
Sci Rep ; 14(1): 2492, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291117

RESUMO

Bile acids have received increasing attention as a marker of the long-term prognosis and a potential therapeutic target in patients with biliary atresia, which is a progressive disease of the hepatobiliary system. A detailed analysis of serum and urinary bile acid compositions was conducted to assess the characteristics of bile acid profiles and the correlation between bile acid profiles and liver fibrosis markers in adult patients with biliary atresia who achieved bilirubin normalization. Serum total bile acids and glucuronide-conjugated (glyco- and tauro-) cholic acids (GCA and TCA) and chenodeoxycholic acids (GCDCA and TCDCA) were significantly higher in patients with biliary atresia than in healthy controls, whereas unconjugated CA and CDCA showed no significant difference. There were no significant differences in CA to CDCA ratios and glycine-to-taurine-conjugated ratios. Urinary glycocholic acid 3-sulfate (GCA-3S) was significantly higher in patients with biliary atresia. Serum GCDCA showed a strong positive correlation with Mac-2 binding protein glycosylation isomer (M2BPGi). These results demonstrate that bile acid congestion persists into adulthood in patients with biliary atresia, even after cholestasis has completely improved after Kasai portoenterostomy. These fundamental data on bile acid profiles also suggest the potential value of investigating bile acid profiles in patients with biliary atresia.


Assuntos
Atresia Biliar , Colestase , Humanos , Atresia Biliar/cirurgia , Ácidos e Sais Biliares , Fígado , Portoenterostomia Hepática/métodos , Colestase/cirurgia , Ácido Quenodesoxicólico
4.
JPGN Rep ; 4(4): e372, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034430

RESUMO

Δ4-3-Oxosteroid 5ß-reductase (AKR1D1) deficiency typically causes severe cholestasis occurs in newborns, leading to death unless patients are treated with primary bile acids. However, we encountered an AKR1D1 deficiency patient treated with only ursodeoxycholic acid who had cholestasis until about 1 year of age but then grew up healthy without further treatment. We also have been following other healthy patients with AKR1D1 mutation who have never developed cholestasis and have not been treated. However, reports are few, involving 3 patients. To better understand and clinically manage a diverse group of patients with AKR1D1 mutation who do not develop potentially fatal cholestasis in the neonatal period, ongoing accumulation and study of informative cases is needed.

5.
Mol Genet Metab ; 140(1-2): 107703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802748

RESUMO

OBJECTIVE: To examine whether it is possible to screen for bile acid synthesis disorders (BASDs) including peroxisome biogenesis disorder 1a (PBD1A) and Niemann-Pick type C1 (NPC1) at the time of newborn mass screening by measuring the intermediary metabolites of bile acid (BA) synthesis. METHODS: Patients with 3ß-hydroxy-ΔSuchy et al. (2021)5-C27-steroid dehydrogenase/isomerase (HSD3B7) deficiency (n = 2), 3-oxo-ΔPandak and Kakiyama (n.d.)4-steroid 5ß-reductase (SRD5B1) deficiency (n = 1), oxysterol 7α-hydroxylase (CYP7B1) deficiency (n = 1), PBD1A (n = 1), and NPC1 (n = 2) with available dried blood spot (DBS) samples collected in the neonatal period were included. DBSs from healthy neonates at 4 days of age (n = 1055) were also collected for the control. Disease specific BAs were measured by newly optimized liquid chromatography-tandem mass spectrometry with short run cycle (5-min/run). The results were validated by comparing with those obtained by the conventional condition with longer run cycle (76-min/run). RESULTS: In healthy specimens, taurocholic acid and cholic acid were the two major BAs which constituted approximately 80% in the measured BAs. The disease marker BAs presented <10%. In BASDs, the following BAs were determined for the disease specific markers: Glyco/tauro 3ß,7α,12α-trihydroxy-5-cholenoic acid 3-sulfate for HSD3B7 deficiency (>70%); glyco/tauro 7α,12α-dihydroxy-3-oxo-4-cholenoic acid for SRD5B1 deficiency (54%); tauro 3ß-hydroxy-5-cholenoic acid 3-sulfate for CYP7B1 deficiency (94%); 3α,7α,12α-trihydroxy-5ß-cholestanoic acid for PBD1A (78%); and tauro 3ß,7ß-dihydroxy-5-cholenoic acid 3-sulfate for NPC1 (26%). *The % in the parenthesis indicates the portion found in the patient's specimen. CONCLUSIONS: Early postnatal screening for BASDs, PBD1A and NPC1 is feasible with the described DBS-based method by measuring disease specific BAs. The present method is a quick and affordable test for screening for these inherited diseases.


Assuntos
Hepatopatias , Síndrome de Zellweger , Recém-Nascido , Humanos , Ácidos e Sais Biliares , Triagem Neonatal , Esteroides , Sulfatos
6.
J Lipid Res ; 64(5): 100363, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966904

RESUMO

CYP7B1 catalyzes mitochondria-derived cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) and 3ß-hydroxy-5-cholesten-(25R)26-oic acid (3ßHCA) and facilitates their conversion to bile acids. Disruption of 26HC/3ßHCA metabolism in the absence of CYP7B1 leads to neonatal liver failure. Disrupted 26HC/3ßHCA metabolism with reduced hepatic CYP7B1 expression is also found in nonalcoholic steatohepatitis (NASH). The current study aimed to understand the regulatory mechanism of mitochondrial cholesterol metabolites and their contribution to onset of NASH. We used Cyp7b1-/- mice fed a normal diet (ND), Western diet (WD), or high-cholesterol diet (HCD). Serum and liver cholesterol metabolites as well as hepatic gene expressions were comprehensively analyzed. Interestingly, 26HC/3ßHCA levels were maintained at basal levels in ND-fed Cyp7b1-/- mice livers by the reduced cholesterol transport to mitochondria, and the upregulated glucuronidation and sulfation. However, WD-fed Cyp7b1-/- mice developed insulin resistance (IR) with subsequent 26HC/3ßHCA accumulation due to overwhelmed glucuronidation/sulfation with facilitated mitochondrial cholesterol transport. Meanwhile, Cyp7b1-/- mice fed an HCD did not develop IR or subsequent evidence of liver toxicity. HCD-fed mice livers revealed marked cholesterol accumulation but no 26HC/3ßHCA accumulation. The results suggest 26HC/3ßHCA-induced cytotoxicity occurs when increased cholesterol transport into mitochondria is coupled to decreased 26HC/3ßHCA metabolism driven with IR. Supportive evidence for cholesterol metabolite-driven hepatotoxicity is provided in a diet-induced nonalcoholic fatty liver mouse model and by human specimen analyses. This study uncovers an insulin-mediated regulatory pathway that drives the formation and accumulation of toxic cholesterol metabolites within the hepatocyte mitochondria, mechanistically connecting IR to cholesterol metabolite-induced hepatocyte toxicity which drives nonalcoholic fatty liver disease.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Colesterol/metabolismo , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
7.
Pediatr Int ; 65(1): e15490, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704863

RESUMO

Bile acids are a category of steroids biosynthesized from cholesterol in the liver. Inborn errors of their metabolism are inherited in an autosomal recessive manner, resulting in enzyme deficiencies affecting the bile acid biosynthetic pathway. These defects in the pathway cause accumulation of unusual bile acids or bile alcohols. Unusual bile acids are highly cytotoxic, causing injury to the liver. These unusual bile acids damage hepatocytes, resulting in cholestatic liver injury beginning in infancy. Except for cerebrotendinous xanthomatosis and some secondary defects, various inborn errors of bile acid metabolism (IEBAM) have been reported from Japan, affecting eight patients including three with 3ß-hydroxy-Δ5 -C27 -steroid dehydrogenase/isomerase deficiency, three with Δ4 -3-oxosteroid 5ß-reductase deficiency, one with oxysterol 7α-hydroxylase deficiency, and one with bile acid-CoA: amino acid N-acyltransferase deficiency. Distinctive laboratory findings in patients with 3ß-hydroxy-Δ5 -C27 -steroid dehydrogenase/isomerase deficiency, Δ4 -3-oxosteroid 5ß-reductase deficiency, and oxysterol 7α-hydroxylase deficiency include normal serum γ-glutamyltransferase and total bile acids concentrations despite presence of cholestasis (elevated serum direct bilirubin) from infancy. Pediatricians and pediatric surgeons who suspect a case of IEBAM should obtain urinary and serum bile acid analyses using gas or liquid chromatography-mass spectrometry as well as genetic analyses. Available treatments include oral cholic acid, chenodeoxycholic acid, glycocholic acid, and ursodeoxycholic acid; fat-soluble vitamin supplementation; and liver transplantation. Early diagnosis and treatment can offer a good outcome.


Assuntos
Colestase , Doenças Metabólicas , Erros Inatos do Metabolismo , Oxisteróis , Criança , Humanos , Japão , Ácidos e Sais Biliares , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Isomerases , Oxirredutases , Oxigenases de Função Mista , Cetosteroides
8.
Metabolites ; 12(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557268

RESUMO

We investigated the age-dependent changes in urinary excretion of glucuronidated bile acids at the C-3 position. Bile acid 3-glucuronides accounted for 0.5% of urinary bile acids in neonates, and the proportion of bile acid 3-glucuronides plateaued at 1-3 years of age. The 3-glucuronides of secondary bile acids were first secreted at 3 months of age, the same time as the establishment of the gut bacterial flora in infants. A considerable portion of bile acid 3-glucuronides were present as non-amidated forms. Our results indicate dynamic hepatic enzyme activity in which the levels of uridine 5'-diphospho-glucuronosyltransferases (UGTs) differ by age group, with higher glucuronidation activity of UGTs towards nonamidated bile acids than amidated bile acids.

9.
Gut Microbes ; 14(1): 2132903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36343662

RESUMO

The gut microbiome of vertebrates is capable of numerous biotransformations of bile acids, which are responsible for intestinal lipid digestion and function as key nutrient-signaling molecules. The human liver produces bile acids from cholesterol predominantly in the A/B-cis orientation in which the sterol rings are "kinked", as well as small quantities of A/B-trans oriented "flat" stereoisomers known as "primary allo-bile acids". While the complex multi-step bile acid 7α-dehydroxylation pathway has been well-studied for conversion of "kinked" primary bile acids such as cholic acid (CA) and chenodeoxycholic acid (CDCA) to deoxycholic acid (DCA) and lithocholic acid (LCA), respectively, the enzymatic basis for the formation of "flat" stereoisomers allo-deoxycholic acid (allo-DCA) and allo-lithocholic acid (allo-LCA) by Firmicutes has remained unsolved for three decades. Here, we present a novel mechanism by which Firmicutes generate the "flat" bile acids allo-DCA and allo-LCA. The BaiA1 was shown to catalyze the final reduction from 3-oxo-allo-DCA to allo-DCA and 3-oxo-allo-LCA to allo-LCA. Phylogenetic and metagenomic analyses of human stool samples indicate that BaiP and BaiJ are encoded only in Firmicutes and differ from membrane-associated bile acid 5α-reductases recently reported in Bacteroidetes that indirectly generate allo-LCA from 3-oxo-Δ4-LCA. We further map the distribution of baiP and baiJ among Firmicutes in human metagenomes, demonstrating an increased abundance of the two genes in colorectal cancer (CRC) patients relative to healthy individuals.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Animais , Humanos , Firmicutes/metabolismo , Filogenia , Ácido Litocólico/metabolismo , Ácido Desoxicólico/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G488-G500, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36193897

RESUMO

Oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic pathway" of cholesterol metabolism. Previously, we demonstrated that an inability to upregulate CYP7B1 in the setting of insulin resistance leads to the accumulation of cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) that initiate and promote hepatocyte injury; followed by an inflammatory response. The current study demonstrates that dietary coffee improves insulin resistance and restores Cyp7b1 levels in a well-characterized Western diet (WD)-induced nonalcoholic fatty liver disease (NAFLD) mouse model. Ingestion of a WD containing caffeinated (regular) coffee or decaffeinated coffee markedly reduced the serum ALT level and improved insulin resistance. Cyp7b1 mRNA and protein levels were preserved at normal levels in mice fed the coffee containing WD. Additionally, coffee led to upregulated steroid sulfotransferase 2b1 (Sult2b1) mRNA expression. In accordance with the response in these oxysterol metabolic genes, hepatocellular 26HC levels were maintained at physiologically low levels. Moreover, the current study provided evidence that hepatic Cyp7b1 and Sult2b1 responses to insulin signaling can be mediated through a transcriptional factor, hepatocyte nuclear factor (HNF)-4α. We conclude coffee achieves its beneficial effects through the modulation of insulin resistance. Both decaffeinated and caffeinated coffee had beneficial effects, demonstrating caffeine is not fundamental to this effect. The effects of coffee feeding on the insulin-HNF4α-Cyp7b1 signaling pathway, whose dysregulation initiates and contributes to the onset and progression of NASH as triggered by insulin resistance, offer mechanistic insight into approaches for the treatment of NAFLD.NEW & NOTEWORTHY This study demonstrated dietary coffee prevented the accumulation of hepatic oxysterols by maintaining Cyp7b1/Sult2b1 expression in a diet-induced NAFLD mice model. Lowering liver oxysterols markedly reduced inflammation in the coffee-ingested mice. Caffeine is not fundamental to this effect. In addition, this study showed Cyp7b1/Sult2b1 responses to insulin signaling can be mediated through a transcriptional factor, HNF4α. The insulin-HNF4α-Cyp7b1/Sult2b1 signaling pathway, which directly correlates to the onset of NASH triggered by insulin resistance, offers insight into approaches for NAFLD treatment.


Assuntos
Hepatite , Resistência à Insulina , Insulinas , Hepatopatia Gordurosa não Alcoólica , Oxisteróis , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxisteróis/metabolismo , Café/metabolismo , Cafeína/farmacologia , Cafeína/metabolismo , Fígado/metabolismo , Modelos Animais de Doenças , Colesterol/metabolismo , Hepatite/metabolismo , Fatores Nucleares de Hepatócito/metabolismo , RNA Mensageiro/metabolismo , Insulinas/metabolismo , Família 7 do Citocromo P450/metabolismo , Esteroide Hidroxilases/metabolismo
11.
J Lipid Res ; 63(10): 100275, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089004

RESUMO

Although most bile acids (BAs) in feces are present in noncovalent forms that can be extracted with ethanol, non-negligible amounts of saponifiable BAs are also present. It is a major concern that such saponifiable BAs are routinely omitted from fecal BA measurements. We compared the BA profiles of healthy stools that were obtained with/without alkaline hydrolysis and found that as much as 29.7% (2.1-67.7%) of total BAs were saponifiable. Specifically, alkaline treatment led to significant elevations of isodeoxycholic acid (isoDCA) and isolithocholic acid (isoLCA) concentrations, suggesting that considerable proportions of isoDCA and isoLCA were esterified. Precursor ion scan data from LC/MS suggested the presence of long-chain FA-linked BAs. We chemically synthesized a series of fatty acid 3ß-acyl conjugates of isoDCA and isoLCA as analytical standards and analyzed their fecal profiles from newborns to adults (n = 64) by LC/MS. FA-conjugated isobile acids (FA-isoBAs) were constantly present from 2 years of age to adulthood. C16- and C18-chain FA-isoBA esters were predominantly found regardless of age, but small amounts of acetic acid esters were also found. FA-isoBA concentrations were not correlated to fecal FA concentrations. Interestingly, there were some adults who did not have FA-isoBAs. Gut bacteria involved in the production of FA-isoBAs have not been identified yet. The present study provides insight into the establishment of early gut microbiota and the interactive development of esterified BAs.The contribution of FA-isoBAs to gut physiology and their role in pathophysiologic conditions such as inflammatory bowel disease are currently under investigation.


Assuntos
Ácidos e Sais Biliares , Hidroxiácidos , Recém-Nascido , Adulto , Humanos , Ácidos e Sais Biliares/análise , Hidroxiácidos/análise , Fezes/química , Ácidos Graxos , Ácido Litocólico/análise , Etanol
12.
Nature ; 599(7885): 458-464, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34325466

RESUMO

Centenarians have a decreased susceptibility to ageing-associated illnesses, chronic inflammation and infectious diseases1-3. Here we show that centenarians have a distinct gut microbiome that is enriched in microorganisms that are capable of generating unique secondary bile acids, including various isoforms of lithocholic acid (LCA): iso-, 3-oxo-, allo-, 3-oxoallo- and isoallolithocholic acid. Among these bile acids, the biosynthetic pathway for isoalloLCA had not been described previously. By screening 68 bacterial isolates from the faecal microbiota of a centenarian, we identified Odoribacteraceae strains as effective producers of isoalloLCA both in vitro and in vivo. Furthermore, we found that the enzymes 5α-reductase (5AR) and 3ß-hydroxysteroid dehydrogenase (3ß-HSDH) were responsible for the production of isoalloLCA. IsoalloLCA exerted potent antimicrobial effects against Gram-positive (but not Gram-negative) multidrug-resistant pathogens, including Clostridioides difficile and Enterococcus faecium. These findings suggest that the metabolism of specific bile acids may be involved in reducing the risk of infection with pathobionts, thereby potentially contributing to the maintenance of intestinal homeostasis.


Assuntos
Bactérias/metabolismo , Vias Biossintéticas , Centenários , Microbioma Gastrointestinal , Ácido Litocólico/análogos & derivados , Ácido Litocólico/biossíntese , 3-Hidroxiesteroide Desidrogenases/metabolismo , Idoso de 80 Anos ou mais , Animais , Antibacterianos/biossíntese , Antibacterianos/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Bactérias/isolamento & purificação , Colestenona 5 alfa-Redutase/metabolismo , Fezes/química , Fezes/microbiologia , Feminino , Bactérias Gram-Positivas/metabolismo , Humanos , Ácido Litocólico/metabolismo , Masculino , Camundongos , Simbiose
13.
Hepatol Commun ; 5(4): 629-633, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33860121

RESUMO

Organic anion transporting polypeptide (OATP) 1B1 (gene, solute carrier organic anion transporter family member 1B1 [SLCO1B1]) and OATP1B3 (SLCO1B3) serve as transporters for hepatic uptake of important endogenous substances and several commonly prescribed drugs. Inactivation of both proteins together causes Rotor syndrome. How this OATP1B1/1B3 defect disturbs bile acid (BA) metabolism is largely unknown. In this study, we performed detailed BA analysis in 3 patients with genetically diagnosed Rotor syndrome. We found that BAs glucuronidated at the C-3 position (BA-3G) accounted for 50% or more of total BAs in these patients. In contrast but similarly to healthy controls, only trace amounts of BA-3G were detected in patients with constitutional indocyanine green excretory defect (OATP1B3 deficiency) or sodium-taurocholate cotransporting polypeptide (NTCP; gene, solute carrier family 10 member 1 [SLC10A1]) deficiency. Therefore, substantial amounts of BA-3G are synthesized in hepatocytes. The cycling pathway of BA-3G, consisting of excretion from upstream hepatocytes and uptake by downstream hepatocytes by OATP1B1/1B3 may exist to reduce the burden on upstream hepatocytes. Conclusion: Detailed BA analysis revealed glucuronidated bile acidemia in patients with Rotor syndrome. Further exploration of the physiologic role of glucuronidated BAs is necessary.


Assuntos
Ácidos e Sais Biliares/sangue , Hepatócitos/metabolismo , Hiperbilirrubinemia Hereditária/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Hepatócitos/patologia , Humanos , Hiperbilirrubinemia Hereditária/sangue , Hiperbilirrubinemia Hereditária/patologia , Lactente , Masculino , Pessoa de Meia-Idade , Transportadores de Ânions Orgânicos/sangue , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/sangue
14.
Sci Rep ; 11(1): 4986, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654186

RESUMO

Diagnosis of biliary atresia (BA) can involve uncertainties. In the present prospective multicenter study, we considered whether urinary oxysterols represent a useful marker for diagnosis of BA in Japanese children. Subjects under 6 months old at 7 pediatric centers in Japan were prospectively enrolled, including patients with cholestasis and healthy controls (HC) without liver disease. Patients with cholestasis constituted 2 groups representing BA patients and others with cholestasis from other causes (non-BA). We quantitatively analyzed 7 oxysterols including 4ß-, 20(S)-, 22(S)-, 22(R)-, 24(S)-, 25-, and 27-hydroxycholesterol by liquid chromatography/electrospray ionization-tandem mass spectrometry. Enrolled subjects included 14 with BA (median age 68 days; range 26-170) and 10 non-BA cholestatic controls (59; 14-162), as well as 10 HC (57; 25-120). Total urinary oxysterols were significantly greater in BA (median, 153.0 µmol/mol creatinine; range 24.1-486.7; P < 0.001) and non-BA (36.2; 5.8-411.3; P < 0.05) than in HC (2.7; 0.8-7.6). In patients with BA, urinary 27-hydroxycholesterol (3.61; 0.42-11.09; P < 0.01) was significantly greater than in non-BA (0.71; 0-5.62). In receiver operating characteristic (ROC) curve analysis for distinguishing BA from non-BA, the area under the ROC curve for urinary 27-hydroxycholesterol was 0.83. In conclusion, this first report of urinary oxysterol analysis in patients with BA indicated that 27-hydroxycholesterol may be a useful marker for distinguishing BA from other causes of neonatal cholestasis.


Assuntos
Atresia Biliar/urina , Hidroxicolesteróis/urina , Biomarcadores/urina , Feminino , Humanos , Lactente , Recém-Nascido , Japão , Masculino , Espectrometria de Massas , Estudos Prospectivos
15.
Dig Dis Sci ; 66(11): 3885-3892, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33385262

RESUMO

BACKGROUND: We encountered 7 Japanese patients with bile acid synthesis disorders (BASD) including 3ß-hydroxy-Δ5-C27-steroid dehydrogenase/isomerase (3ß-HSD) deficiency (n = 3), Δ4-3-oxosteroid 5ß-reductase (5ß-reductase) deficiency (n = 3), and oxysterol 7α-hydroxylase deficiency (n = 1) over 21 years between 1996 and 2017. AIM: We aimed to clarify long-term outcome in the 7 patients with BASD as well as long-term efficacy of chenodeoxycholic acid (CDCA) treatment in the 5 patients with 3ß-HSD deficiency or 5ß-reductase deficiency. METHODS: Diagnoses were made from bile acid and genetic analyses. Bile acid analysis in serum and urine was performed using gas chromatography-mass spectrometry. Clinical and laboratory findings and bile acid profiles at diagnosis and most recent visit were retrospectively obtained from medical records. Long-term outcome included follow-up duration, treatments, growth, education/employment, complications of treatment, and other problems. RESULTS: Medians with ranges of current patient ages and duration of CDCA treatment are 10 years (8 to 43) and 10 years (8 to 21), respectively. All 7 patients, who had homozygous or compound heterozygous mutations in the HSD3B7, SRD5B1, or CYP7B1 gene, are currently in good health without liver dysfunction. In the 5 patients with CDCA treatment, hepatic function gradually improved following initiation. No adverse effects were noted. CONCLUSIONS: We concluded that CDCA treatment is effective in 3ß-HSD deficiency and 5ß-reductase deficiency, as cholic acid has been in other countries. BASD carry a good prognosis following early diagnosis and initiation of long-term CDCA treatment.


Assuntos
Hiperplasia Suprarrenal Congênita/tratamento farmacológico , Hiperplasia Suprarrenal Congênita/genética , Ácidos e Sais Biliares/biossíntese , Ácido Quenodesoxicólico/uso terapêutico , Família 7 do Citocromo P450/metabolismo , Oxirredutases/genética , Esteroide Hidroxilases/metabolismo , Adolescente , Adulto , Criança , Família 7 do Citocromo P450/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Humanos , Japão , Mutação , Esteroide Hidroxilases/genética , Adulto Jovem
16.
BMC Microbiol ; 21(1): 24, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430766

RESUMO

BACKGROUND: Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. RESULTS: Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. Significant alterations in network topology and connectivity in function were observed, despite similarity in gut microbial alpha diversity (P = 0.30) and beta-diversity (P = 0.123) between control and BBR treatment. BBR increased cecal bile acid concentrations, (P < 0.05), most notably deoxycholic acid (DCA) (P < 0.001). Overall, analysis of transcriptomes and correlation networks indicates both bacterial species-specific responses to BBR, as well as functional commonalities among species, such as up-regulation of Na+/H+ antiporter, cell wall synthesis/repair, carbohydrate metabolism and amino acid metabolism. Bile acid concentrations in the GI tract increased significantly during BBR treatment and developed extensive correlation networks with expressed genes in the B4PC2 community. CONCLUSIONS: This work has important implications for interpreting the effects of BBR on structure and function of the complex gut microbiome, which may lead to targeted pharmaceutical interventions aimed to achieve the positive physiological effects previously observed with BBR supplementation.


Assuntos
Bactérias/classificação , Proteínas de Bactérias/genética , Berberina/administração & dosagem , Ácidos e Sais Biliares/metabolismo , RNA Ribossômico 16S/genética , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Berberina/farmacologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Masculino , Metabolômica , Camundongos , Análise de Sequência de RNA , Especificidade da Espécie
17.
J Lipid Res ; 61(12): 1629-1644, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33008924

RESUMO

NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic/alternative" pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.


Assuntos
Família 7 do Citocromo P450/metabolismo , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/metabolismo , Esteroide Hidroxilases/metabolismo , Animais , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Oxisteróis/metabolismo
18.
Steroids ; 164: 108730, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32961239

RESUMO

Bile acid compositions are known to change dramatically after birth with aging. However, no reports have described the transition of conjugated urinary bile acids from the neonatal period to adulthood, and such findings would noninvasively offer insights into hepatic function. The aim of this study was to investigate differences in bile acid species, conjugation rates, and patterns, and to pool characteristics for age groups. We measured urinary bile acids in spot urine samples from 92 healthy individuals ranging from birth to 58 years old using liquid chromatography tandem mass spectrometry (LC/ESI-MS/MS). Sixty-six unconjugated and conjugated bile acids were systematically determined. After birth, urinary bile acids dramatically changed from fetal (i.e., Δ4-, Δ5-, and polyhydroxy-bile acids) to mature (i.e., CA and CDCA) bile acids. Peak bile acid excretion was 6-8 days after birth, steadily decreasing thereafter. A major change in bile acid conjugation pattern (taurine to glycine) also occurred at 2-4 months old. Our data provide important information regarding transitions of bile acid biosynthesis, including conjugation. The data also support the existence of physiologic cholestasis in the neonatal period and the establishment of the intestinal bacterial flora in infants.


Assuntos
Ácidos e Sais Biliares/urina , Adolescente , Adulto , Ácidos e Sais Biliares/normas , Criança , Pré-Escolar , Cromatografia Líquida/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Adulto Jovem
19.
Aliment Pharmacol Ther ; 52(5): 821-828, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32687674

RESUMO

BACKGROUND: Elobixibat, a novel inhibitor of apical sodium-dependent bile acid transporter for treating chronic constipation, increases colonic bile acid concentrations, stimulating bowel function. However, it is not clear which bile acids are altered, or whether altered gut microbiota are associated with functional effects that may alter bowel function. AIMS: To investigate the effects of elobixibat on changes in the faecal concentrations of total and individual bile acids and in faecal microbiota. METHODS: This was a prospective, single-centre study. After baseline period, patients received 10 mg daily of elobixibat for 2 weeks. We evaluated the effects on bowel function, changes in faecal bile acid concentrations and composition of gut bacteria, before and after elobixibat administration. RESULTS: In the 30 patients analysed, the frequency of pre- and post-treatment bowel movements per fortnight was 7 and 10 (P < 0.001), respectively. The pre-treatment faecal bile acid concentration increased significantly from 10.9 to 15.0 µg/g stool post-treatment (P = 0.030), with a significant increase in faecal deoxycholic acid (pre-treatment 3.94 µg/g stool to post-treatment 5.02 µg/g stool, P = 0.036) and in glycine-conjugated deoxycholic and chenodeoxycholic acids. Shannon index was significantly decreased, but there were no significant changes at the genus and phylum levels. CONCLUSIONS: Short term treatment with elobixibat increased the concentrations of total bile acids and deoxycholic acid and decreased the diversity of faecal microbiota. The biological effects of elobixibat are associated with its effects on secretory bile acids, rather than the structural changes of an altered faecal microbiota.


Assuntos
Constipação Intestinal/tratamento farmacológico , Defecação/efeitos dos fármacos , Ácido Desoxicólico/metabolismo , Dipeptídeos/uso terapêutico , Microbiota/efeitos dos fármacos , Tiazepinas/uso terapêutico , Adulto , Idoso , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Constipação Intestinal/epidemiologia , Constipação Intestinal/fisiopatologia , Ácido Desoxicólico/análise , Fezes/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transportadores de Ânions Orgânicos Dependentes de Sódio , Estudos Prospectivos , Simportadores
20.
Blood Adv ; 4(9): 1833-1843, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32365188

RESUMO

Chemotherapeutic agents can reduce bone marrow (BM) activity, causing myelosuppression, a common life-threatening complication of cancer treatment. It is challenging to predict the patients in whom prolonged myelosuppression will occur, resulting in a delay or discontinuation of the treatment protocol. An early indicator of recovery from myelosuppression would thus be highly beneficial in clinical settings. In this study, bile acids (BAs) were highly increased in the systemic circulation as a natural response during recovery from myelosuppression, supporting regeneration of BM cells. BA levels in the blood of pediatric cancer patients and mice treated with chemotherapeutic agents were increased, in synchrony with early proliferation of BM cells and recovery from myelosuppression. In a mouse model of altered BA composition, Cyp8b1 knockout mice, a subset of mice recovered poorly after chemotherapy. The poor recovery correlated with low levels and changes in composition of BAs in the liver and systemic circulation. Conversely, BA supplementation in chemotherapy-treated wild-type mice resulted in significantly improved recovery. The results suggest that part of the mechanism by which BAs support recovery is the suppression of endoplasmic reticulum stress pathways in expanding and recovering hematopoietic cells. The findings propose a novel role of BAs as early markers of recovery and active components of the recovery process after chemotherapy.


Assuntos
Ácidos e Sais Biliares , Fígado , Animais , Medula Óssea , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...